Astromat

Astromaterials Data System

Citations

Below are publications that cite the Astromaterials Data System. Our team continuously updates this list, but please let us know if we've missed one.

Do you have a publication that cites Astromat? Ensure its included on our citation list by emailing the Astromat Team at info @ astromat.org.

2024
2023
  • Bindi, L., & Cruciani, G. (Eds.). (2023). Celebrating the international year of mineralogy: progress and landmark discoveries of the last decades. Springer.
  • Deng, Z., Schiller, M., Jackson, M. G., Millet, M.-A., Pan, L., Nikolajsen, K., Saji, N. S., Huang, D., & Bizzarro, M. (2023). Earth’s evolving geodynamic regime recorded by titanium isotopes. Nature, 621(7977), 100–104. https://doi.org/10.1038/s41586-023-06304-0
  • Frossard, P., Bonnand, P., Boyet, M., & Bouvier, A. (2024). Role of redox conditions and thermal metamorphism in the preservation of Cr isotopic anomalies in components of non-carbonaceous chondrites. Geochimica et Cosmochimica Acta, 367, 165–178. https://doi.org/10.1016/j.gca.2023.12.022
  • Luo, B., Wang, Z., Song, J., Qian, Y., He, Q., Li, Y., Head, J. W., Moynier, F., Xiao, L., Becker, H., Huang, B., Ruan, B., Hu, Y., Pan, F., Xu, C., Liu, W., Zong, K., Zhao, J., Zhang, W., … Zhang, H. (2023). The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nature Geoscience, 16(4), 301–308. https://doi.org/10.1038/s41561-023-01146-x
  • Onyett, I. J., Schiller, M., Makhatadze, G. V., Deng, Z., Johansen, A., & Bizzarro, M. (2023). Silicon isotope constraints on terrestrial planet accretion. Nature, 619(7970), 539–544. https://doi.org/10.1038/s41586-023-06135-z
  • Prabhu, A., Morrison, S. M., & Hazen, R. M. (2023). Mineral Informatics: Origins. In L. Bindi & G. Cruciani (Eds.), Celebrating the International Year of Mineralogy (pp. 39–68). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28805-0_3
  • Prissel, K., Fei, Y., & Strobel, T. A. (2023). Feiite: Synthesis, stability, and implications for its formation conditions in nature. American Mineralogist, 108(7), 1315–1321. https://doi.org/10.2138/am-2022-8633
  • Sehlke, A., Sears, D. W. G., & the ANGSA Science Team. (2024). The Apollo 17 Regolith: Induced Thermoluminescence Evidence for Formation by a Single Event ∼100 Million Years Ago and Possibly the Presence of Tycho Material. Journal of Geophysical Research: Planets, 129(4), e2023JE008083. https://doi.org/10.1029/2023JE008083
  • Yuan, J., Huang, H., Chen, Y., Yang, W., Tian, H., Zhang, D., & Zhang, H. (2023). Automatic Bulk Composition Analysis of Lunar Basalts: Novel Big-Data Algorithm for Energy-Dispersive X-ray Spectroscopy. ACS Earth and Space Chemistry, 7(2), 370–378. https://doi.org/10.1021/acsearthspacechem.2c00260
2022
  • Gorce, J. S., Mittlefehldt, D. W., & Simon, J. I. (2022). Localized equilibrium and mineralogic effects on trace element distribution and mobility in highly metamorphosed Eucrite Elephant Moraine (EET) 90020. Geochimica et Cosmochimica Acta, 335, 256–271. https://doi.org/10.1016/j.gca.2022.08.034
  • Johnston, S., Brandon, A., McLeod, C., Rankenburg, K., Becker, H., & Copeland, P. (2022). Nd isotope variation between the Earth–Moon system and enstatite chondrites. Nature, 611(7936), 501–506. https://doi.org/10.1038/s41586-022-05265-0
  • Nicklas, R. W., Day, J. M. D., Gardner-Vandy, K. G., & Udry, A. (2022). Early silicic magmatism on a differentiated asteroid. Nature Geoscience, 15(9), 696–699. https://doi.org/10.1038/s41561-022-00996-1
  • Torcivia, M. A., & Neal, C. R. (2022). Unraveling the Components Within Apollo 16 Ferroan Anorthosite Suite Cataclastic Anorthosite Sample 60025: Implications for the Lunar Magma Ocean Model. Journal of Geophysical Research: Planets, 127(2), e2020JE006799. https://doi.org/10.1029/2020JE006799
  • Zhang, B., Chabot, N. L., & Rubin, A. E. (2022). Compositions of carbonaceous-type asteroidal cores in the early solar system. Science Advances, 8(37), eabo5781. https://doi.org/10.1126/sciadv.abo5781
  • Zhang, D., Su, B., Chen, Y., Yang, W., Mao, Q., & Jia, L.-H. (2022). Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts. Lithos, 414–415, 106639. https://doi.org/10.1016/j.lithos.2022.106639
2019-2021
  • Brugman, K., Phillips, M. G., & Till, C. B. (2021). Experimental Determination of Mantle Solidi and Melt Compositions for Two Likely Rocky Exoplanet Compositions. Journal of Geophysical Research: Planets, 126(7), e2020JE006731. https://doi.org/10.1029/2020JE006731
  • Norman, M. D., Jourdan, F., & Hui, S. S. M. (2019). Impact History and Regolith Evolution on the Moon: Geochemistry and Ages of Glasses from the Apollo 16 Site. Journal of Geophysical Research: Planets, 124(12), 3167–3180. https://doi.org/10.1029/2019JE006053
  • Vogt, M., Trieloff, M., Ott, U., Hopp, J., & Schwarz, W. H. (2021). Solar noble gases in an iron meteorite indicate terrestrial mantle signatures derive from Earth’s core. Communications Earth & Environment, 2(1), 92. https://doi.org/10.1038/s43247-021-00162-2
  • Xue, Z., Welsh, D. F., Neal, C. R., & Xiao, L. (2021). Understanding the textures of Apollo 11 high‐Ti mare basalts: A quantitative petrographic approach. Meteoritics & Planetary Science, 56(12), 2211–2229. https://doi.org/10.1111/maps.13767
Citations
2024
Back To Top
The Bubble Nebula (NGC 7635) observed by the NASA/ESA Hubble Space Telescope.
NASA Logo

Funded by NASA.
Hosted at the LDEO of Columbia University.

ArchiveStart a SubmissionSubmission GuidelinesTemplatesCuration ServicesPoliciesSearch Astromat ArchiveSearch AstroRepoArchive Overview
Privacy PolicyTerms of Use

© Copyright 2024 Astromaterials Data System.